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The spreading of Newtonian fluids on smooth solid substrates is well understood; the
speed of the contact line is given by a competition between capillary driving forces
and viscous dissipation, yielding Tanner’s law R ∝ t1/10. Here we study the spreading
of non-Newtonian liquids, focusing on the two most common non-Newtonian flow
properties, a shear-rate dependence of the viscosity and the existence of normal
stresses. For the former, the spreading behaviour is found not to deviate strongly from
Tanner’s law. This is quite surprising given that, within the lubrication approximation,
it can be shown that the contact line singularity disappears due to the shear-dependent
viscosity. The experiments are compared with the predictions of the lubrication theory
of power-law fluids. If normal stresses are present, again only small deviations from
Tanner’s law are found in the experiment. This can be understood by comparing
viscous and normal stress contributions to the spreading; it turns out that only
logarithmic corrections to Tanner’s law survive, which are nonetheless visible in the
experiment.

1. Introduction
The spreading of a droplet on a smooth solid surface has received much attention

because of the singularity that occurs at the contact line (Huh & Scriven 1971)
and its importance for a large number of applications. The radius R of the drop
grows according to Tanner’s law (Tanner 1979): R(t) ∝ t1/10. Tanners’s law reflects
the competition between capillary forces whose amplitude is given by the surface
tension σ and viscous dissipation given by the viscosity η. The final result for the
spreading rate also involves the volume of the drop Ω and is R(t) = Ω3/10(σ/η)1/10t1/10.
This classical result is well-established. However, the value of the prefactor is still
controversial and differs according to the model used for contact line motion (for
reviews see Dussan V. 1979; de Gennes 1985; Pomeau 2002; for a discussion of this
matter see Eggers & Stone 2004).

The spreading of non-Newtonian liquids is much less well understood. The
main challenge in the problem of the spreading of non-Newtonian fluids is that
the constitutive equation is nonlinear (Rosenblat & Davis 1985). Most theoretical
studies have used simple constitutive equations, focusing on shear-thinning behaviour
(Gorodtsov 1989; King 2001a, b; Starov et al. 2003; Neogi & Ybarra 2001; Betelú &
Fontelos 2003). Shear thinning was even proposed as suppressing the singularity at the
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contact line (Weidner & Schwartz 1994; Ansini & Giacomelli 2002; Carré & Woehl
2002). The first attempts to account for other non-Newtonian properties concluded
that normal stress effects were unimportant (Neogi & Ybarra 2001; Rosenblat &
Davis 1985). From the experimental side, we know of only a single experimental
study in which the spreading of a polymer solution at only one concentration was
studied (Carré & Eustache 1997, 2000). Small deviations from Tanner’s law were
reported, and associated with the shear-thinning behaviour of the solution.

Most non-Newtonian fluids encountered in practice exhibit a number of different
non-Newtonian properties, making it difficult to attribute deviations from the
Newtonian result to a specific non-Newtonian flow property. Notably, concentrated
polymer solutions (such as the one used in the experiments of Carré & Eustache
1997) often exhibit both shear-thinning and normal stress effects. Here we attempt
to disentangle the influence that different non-Newtonian flow properties have on
the spreading. To do so, we study spreading in two different dilute or semi-dilute
polymer solutions, that each exhibit only one non-Newtonian property, in the sense
that other non-Newtonian effects can be neglected. For solutions of flexible polymers,
elastic effects such as normal stresses and a large elongational viscosity are dominant,
whereas the shear viscosity is almost constant. Stiff polymers, on the other hand, may
show a strong shear rate dependence of the viscosity, but almost negligible elastic
effects (i.e. normal stresses). We study the spreading of these two model solutions
as a function of polymer concentration, in order to change the size of the non-
Newtonian effects. In addition, we characterize the non-Newtonian flow properties of
these polymer solutions completely, allowing separate and quantitative investigation
of the influence of the two most common non-Newtonian properties on the spreading:
shear thinning and normal stress effects. We compare the experimental results with
the lubrication theory for power-law fluids, and with a simple law accounting for
normal stresses.

2. Experiment
2.1. Parameters

The rheology of the polymer solutions was studied on a Reologica Stress-Tech
rheometer equipped with a normal force transducer (cone–plate geometry). We use
a large cone (55 mm) with a small angle (0.5◦) in order to be able to detect small
normal stress differences at high shear rates. The temperature at which experiments
were performed was 20 ± 1◦C. Pure water is provided by a Milli-Q Plus system.

For the experiments on rigid polymers (shear-thinning polymer solution), we use
solutions of Xanthane, a stiff rodlike polysaccharide with an average molecular
weight of Mw = 3 × 106 g mol−1, obtained from Aldrich. Rheological measurements
show that the overlap concentration c∗ is 50 w.p.p.m. (parts per million per weight),
so that the measurements presented below are in the dilute and semi-dilute regime.
The surface tension for the air/Xanthane solution is 72 ± 2 mN m−1 at 20◦C (Lindner,
Bonn & Meunier 2000), independent of polymer concentration over the range of
concentrations used in our experiments and thus very close to the surface tension of
pure water (72.7 ± 2 mN m−1). The rheological characteristics of the xanthane were
determined; we observe shear-thinning for shear rates lying between 10 and 1000
s−1 and a polymer concentration above 50 p.p.m. We describe the shear-thinning
behaviour by a shear rate dependence of the viscosity as η = aγ̇ −α , where γ̇ is the
shear rate and the power factor α is positive reflecting the shear-thinning property of
the fluid (figure 1a). Normal stresses are so small that they are not measurable.
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Figure 1. (a) Viscosity versus shear rate: a power law describes the shear-thinning behaviour
of xanthane solutions (η = aγ̇ −α). (b) PAA solutions exhibit normal stress when subjected to
shear whereas viscosity remains almost constant. Quadratic fits give the first normal stress
coefficient ψ1 (N1 = ψ1γ̇

2).

For the experiments on flexible polymers, we use polyacrylamide (PAA) from
Sigma; its molecular weight is Mw = 4 × 106 g mol−1. Rheological measurements show
that the overlap concentration c∗ is 400 w.p.p.m., so that the measurements presented
below are again in the dilute and semi-dilute regime. The surface tension for the
air/PAA solution is found to be 68 ± 2 mN m−1, and is again found to be independent
of polymer concentration over the range of concentrations used in our experiments.
The slight lowering of the surface tension with respect to that of pure water indicates
that some adsorption (either of the polymer or of some impurities) takes place at the
air/solution interface. The PAA solutions have an almost constant shear viscosity,
but do exhibit normal stresses. The normal stress N1 is related to the shear rate via
the first normal stress coefficient ψ1: N1 = ψ1γ̇

2 (figure 1b).
We use mica as a hydrophilic substrate because of its molecular smoothness. We

carefully split mica foils in order to obtain clean and smooth surfaces. If the splitting
goes wrong, one can observe steps on the mica surface, and their effects on the
macroscopic shape of the drop are easily seen: the contact line is pinned on the
defects of the surface, and the droplet is no longer circular. We discard all data for
which the droplet is not circular.

Using a microsyringe, we form small drops of few microlitres. These are gently
deposited on the mica slide. Figure 2 shows a typical picture of the droplet.
The droplets are captured by a CCD camera coupled to a computer. This allows
measurements of their radius R as a function of time.

2.2. Results

As a reference experiment, the spreading of a droplet of pure water on mica is
found to closely follow Tanner’s law over the range of times and radii covered in the
experiments. This means that the droplets are small enough for gravity effects to be
small, and that spurious effects due to evaporation of the liquid are also unimportant.
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Figure 2. Spreading droplet imaged from above. The size is typically centimetric.
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Figure 3. (a) Measured radius of xanthane droplets versus time. The solid lines represent
power-law fits. (b) Measured radius of PAA droplets versus time. The solid lines represent
power-law fits; the exponents are slightly smaller than 0.1.

The spreading of the shear-thinning fluid is found to be slightly slower than that
of a Newtonian fluid: we observe a power in the spreading law that is smaller than
0.1. We find that the spreading of the non-Newtonian fluid can be characterized by
fitting a law of the form:

R(t) = Ctn.

The fit (figure 3a) then yields the spreading exponent n (figure 4a) and the prefactor
C (figure 4b) for different polymer concentrations. In order to make the link with the
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Figure 4. Spreading exponent n (a) and prefactor C (b) for xanthane solutions deduced from
figure 3 (a) and comparison to theoretical predictions (equation (3.4). The dashed line in (a) is
the result equivalent to equation (3.4) but with gravitational forces driving the spreading.

rheology we recall that the shear-thinning exponent α is an increasing function of
polymer concentration. We therefore observe that the power of the evolution of the
radius decreases with increasing shear thinning, i.e. increasing α.

For the second polymer solution, which exhibits normal stress effects but no shear
thinning, we also found a power-law behaviour of the radius versus time. The fits to
the data for R(t) yield a spreading exponent close to but slightly smaller than 0.1
(figure 3b), very similar to Tanner’s law. However, the prefactor is not simply given
by the viscosity, as will be shown below.

3. Theory
3.1. Power-law vicosity

We consider here the dynamics of a thin layer of a fluid of surface tension σ spreading
on a horizontal hydrophilic substrate. In the corresponding lubrication theory, the
only important component of the deformation rate tensor is the horizontal shear
rate γ̇ , so that we assume a power-law viscosity η = aγ̇ −α . Considering cylindrical
symmetry, let h(t, r) be the film thickness as a function of time and of the radial
coordinate. The lubrication equation has been derived by several authors (see e.g.
King 2001a; Starov et al. 2003):

∂h

∂t
+ ∇ ·

(
1 − α

3 − 2α

(σ

a
∇ ·∇2h

) 1
1−α

h
3−2α
1−α

)
=0. (3.1)

We have neglected gravity, assuming that the typical horizontal scale is smaller than
the capillary length

√
σ/ρg � 2.7 mm. This is only approximately true in some

experiments but it is sufficient to account for most of our observations. Using a time
scale τ and a length scale 
, one can look for self-similar solutions (King 2001a;
Starov et al. 2003)

h(r, t) =
( t

τ

)−2 1−α
10−3α


H

(
r




(τ
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) 1−α
10−3α

)
. (3.2)
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Figure 5. Two drop profiles H (ξ ) as given by (3.3) for (a) α =0.2 and (b) α = 0.8.

The scaling law for the drop radius R ∼ tn = t (1−α)/(10−3α) can be compared directly
to the results of the experiments; it is in fair agreement with the measurements
(figure 4a).

To push the comparison between theory and experiment somewhat farther, we also
calculate the prefactor. Consider the equation for the similarity function H (ξ ):

H ′′′ + H ′′/ξ − H ′/ξ 2 = n1−αξ 1−α/H 2−α. (3.3)

This equation has only one solution satisfying H (0) = 1 (choice of length scale),
H ′(0) = 0 (axisymmetry) and H (ξc) = H ′(ξc) = 0 for some ξc (zero contact angle at
the drop boundary) (figure 5). A shooting method allows the numerical solution of
this equation and gives the value of the non-dimensional drop radius ξc and non-
dimensional volume ω. Coming back to dimensional units, this yields the prefactor
of the drop radius scaling law

R = C

(
σ t1−α

a

) 1
10−3α

Ω
3−α

10−3α , C = ξc

((
1 − α

3 − 2α

)1−α

ω−3+α

) 1
10−3α

. (3.4)

Here Ω is the drop volume, σ is again the surface tension and a is the rheological
prefactor in the shear-thinning law. The prefactor C computed this way is not far
from the measured one as shown in figure 4(b).

3.2. Normal stress effects

We now consider a fluid of surface tension σ , constant shear viscosity η but normal
stresses given by N1 = ψ1γ̇

2. The quadratic dependence on the shear rate is an exact
result for small elasticity, and describes the rheology data well. The normal stresses
act in a similar way to the capillary pressure in driving the flow. Their contribution to
the total pressure gradient can be estimated as N1 ∼ ψ1(Ṙ/h)2, Ṙ being the contact
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Figure 6. Factor b deduced from figure 3(b) versus concentration and comparison with the
inverse of the relaxation time η/ψ1 (see equation (3.6)).

line velocity and h the typical drop height. If X is the distance to the drop periphery,
the normal stress gradient ∇N1 ∼ N1/X drives the flow there.

To estimate the importance of this normal stress gradient, it must be compared to
the viscous stress gradient ηṘ/h2. Their ratio defines the rheological number

N =
ψ1Ṙ

ηX
. (3.5)

Near the drop centre, N is of the order of ψ1Ṙ/(ηR) ∼ ψ1/(ηt) ∼ 10−2 for typical
parameters, assuming a power-law dependence on time for R. The rheological number
becomes of order unity at a small distance Xc ∼ ψ1Ṙ/η from the three-phase contact
line. Therefore, normal stresses are unimportant near the centre and for most of the
flow the polymer solution behaves as a Newtonian liquid. Very close to the contact
line, however, the outward flow is accelerated by the normal stress effect. The distance
Xc at which the normal stresses start to dominate the viscous stresses will act as a cut-
off for the Cox–Voinov law for the contact angle (Cox 1986), θ3 ∼ log(R/Xc)ηṘ/σ .
Using volume conservation Ω ∼ θR3, this yields

R ∼ Ω3/10

(
σ t

η

)1/10 (
log

ηt

10ψ1

)−1/10

. (3.6)

This can again be compared directly to the data. The experimental exponents
are slightly smaller than 1/10 because of the logarithmic correction to the power-
law behaviour. This correction is very difficult to observe with Newtonian liquids
whereas it is evident here when fitting experimental data for the radius to the form
R = a(t/ log(bt))1/10. We find good agreement with equation (3.6), and in particular
b � 0.04η/ψ1 (figure 6). We see that, even though the normal stresses are important
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only at the drop edge, this has a macroscopic consequence for the behaviour of the
radius.

4. Discussion
The main and perhaps surprising conclusion of this work is that Tanner’s law

R(t) ∼ Ω3/10(σ/η)1/10t1/10 is remarkably robust. Neither strong shear thinning, nor
large normal stress effects lead to a very different spreading.

For shear-thinning fluids, this is surprising since calculations show that the contact-
line singularity disappears. Roughly speaking, in the calculation this happens because
the shear rate diverges near the contact line and therefore the viscosity tends to zero
so that the dissipation does not diverge. In reality, of course, the viscosity will not
go to zero, but rather to that of the solvent. This poses the question of the validity
of a power-law viscosity for the fluids that we have used. Rheological data show
that the solvent viscosity is reached at shear rates of the order of γ ∼ 104 s−1. The
shear rate near the contact line is of the order of ω ∼ v/h, the typical velocity being
v ∼ 10−3 m s−1, so that the thickness h at which the solvent viscosity is reached is
h ∼ 100 nm, comparable to the range of Van der Waals forces. We therefore conclude
that the solvent viscosity does not matter, and that the results of the theory may be
compared to the experiments.

For practical purposes, to predict the spreading rate of a slightly shear-thinning
fluid, one can replace the viscosity with an effective viscosity ηeff = aτα , where τ ∼
ηeffR0/(σθ3

0 ) is a typical experimental spreading time for an initial radius R0 and
contact angle θ0, so that

ηeff =

(
Rα

0 a

σαθ3α
0

) 1
1−α

. (4.1)

For a fluid with normal stress effects that are not too large, one can proceed similarly
using

ηeff = η

(
log

(
R0η

2

ψ1σ θ3
0

))1/10

. (4.2)

It follows that for the spreading of non-Newtonian liquids new mechanisms operate
that limit the speed of a contact line. In both cases, microscopic forces (i.e. van der
Waals forces) appear to be unimportant. For a shear-thinning fluid, the contact line
singularity is removed due to the viscosity decrease. On the other hand, normal
stresses provide an additional driving force that overcomes the viscous resistance
near the contact line. One would thus imagine that both shear thinning and normal
stress effects should accelerate the motion of the contact line. In contrast with this
näıve expectation, in both experiments the spreading is slowed down. This can be
understood as follows. Both effects accelerate the flow near the contact line, and both
effects do so more strongly as the shear rate is increased. Because the shear rate
increases upon approaching the contact line, the parts closest to the corner will move
faster, and the apparent contact angle decreases. Since the spreading velocity varies
with the contact angle, the lowering of the contact angle decreases the driving force
for spreading, and the contact line is slowed down, in agreement with the experimental
observations.

A.B. is grateful to Martine Ben Amar for fruitful discussions. LPS de l’ENS is
UMR 8550 of the CNRS associated with the Universities Paris 6 and Paris 7.
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Carré, A. & Woehl, P. 2002 Hydrodynamic behaviour at the triple line of spreading liquids and
the divergence problem. Langmuir 18, 3600–3603.

Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow.
J. Fluid Mech. 168, 169–194.

Dussan V., E. B. 1979 On the spreading of liquids on a solid surface: static and dynamic contact
lines. Annu. Rev. Fluid Mech. 11, 371–400.

Eggers, J. & Stone, H. A. 2004 Characteristic lenghts at moving contact lines for a perfectly
wetting fluid: the influence of speed of the dynamic contact angle. J. Fluid Mech. 505, 309.

de Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863.

Gorodtsov, V. A. 1989 Spreading of a film of nonlinearly viscous liquid over horizontal smooth
solid surface. J. Engng Phys. 57, 879–884.

Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid
contact line. J. Colloid Interface Sci. 35, 85–101.

King, J. R. 2001a The spreading of power-law fluids. In IUTAM Symposium on Free Surface Flows
(ed. A. C. King & Y. D. Shikhmurzaev), pp. 153–160. Kluwer.

King, J. R. 2001b Two generalisations of the thin film equation. Math. Comput. Modelling 34,
737–756.

Lindner, A., Bonn, D. & Meunier, J. 2000 Viscous fingering in a shear-thinning fluid. Phys. Fluids
12, 256–261.

Neogi, P. & Ybarra, R. M. 2001 The absence of a rheological effect on the spreading of some
drops. J. Chem. Phys. 115, 7811–7813.

Pomeau, Y. 2002 Recent progress in the contact line problem: a review. C. R. Mecanique 330,
207–222.

Rosenblat, S. & Davis, S. H. 1985 How do liquid drops spread on solids. In Frontiers in Fluid
Mechanics (ed. S. H. Davis & J. L. Lumley), pp. 171–183. Springer.

Starov, V. M., Tyatyushkin, A. N., Velarde, M. G. & Zhdanov, S. A. 2003 Spreading of
non-newtonian liquids over solid substrates. J. Colloid Interface Sci. 257, 284–290.

Tanner, L. H. 1979 The spreading of silicon oil on horizontal surfaces. J. Phys. D 12, 1473–1484.

Weidner, D. E. & Schwartz, L. W. 1994 Contact-line motion of shear-thinning liquids. Phys.
Fluids 6, 1994.


